AIAA 2003-3431

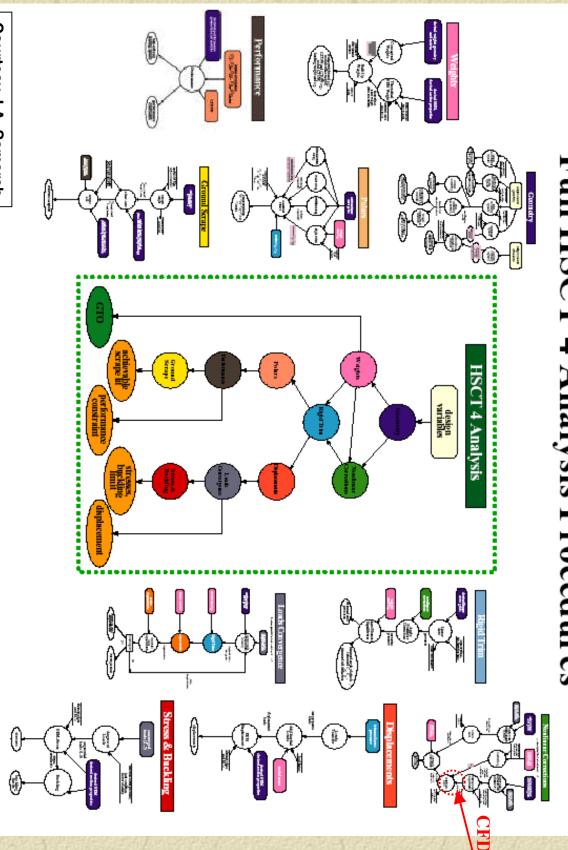
Approach to Multidisciplinary Dynamically Reconfigurable **Problems**

Michael Lewis, College of William & Mary Natalia Alexandrov, NASA LaRC, MDOB

http://mdob larc nasa gov

Example: a multidisciplinary analysis (MDA)

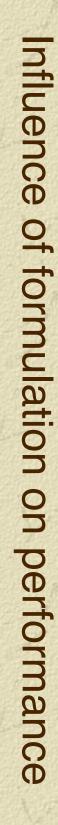
Full HSCT 4 Analysis Procedures



Courtesy J.A. Samareh

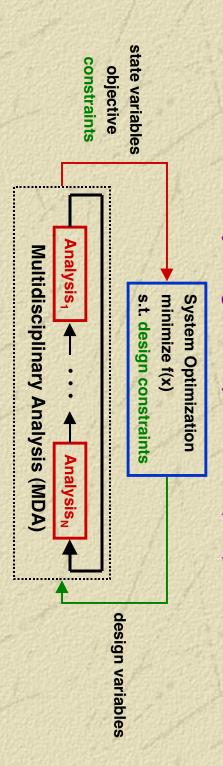
What is reconfigurability?

- Computational component-based approach to formulations within optimization algorithms straightforward transformation among problem MDO problem synthesis that allows for
- * Assumption: MDO-based NLP Ç design problem
- * Outline
- Effect of problem formulation on tractability
- Origins of reconfigurability
- Illustration for 3 formulations and barrier-SQP
- Long-term plans



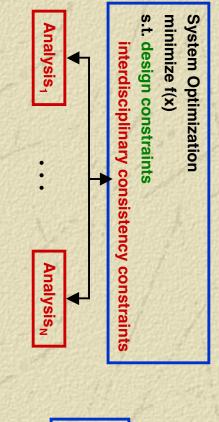
Example: HPCCP formulation study, Alexandrov & Kodiyalam, AIAA 1998-4884

Fully Integrated Optimization (FIO)



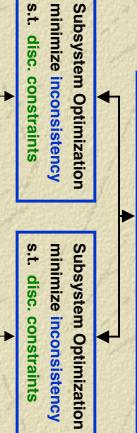
Distributed Analysis Optimization

(DAO)



Collaborative Optimization

System Optimization minimize f(x)
s.t. interdisciplinary consistency constraints



Analysis₁

Analysis_N

Influence of formulation on performance, cont.

- Test problems from MDO Test Suite (small, simple)
- Several performance metrics
- Dramatic differences in performance
- Computational and analytical studies (see paper for refs.): algorithms to solve the problem reliably and efficiently disciplinary autonomy, directly affects the ability of numerical analytical features of formulations, e.g., the degree of

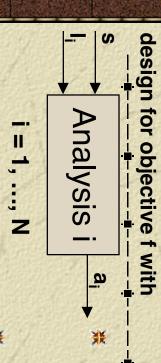
CO 15626	DAO 9530	FIO 610	Problem 1
19872	8976	220	N
1785	382	610	ω
2102	N/A	81	4
837	544	3234	Ŋ
40125	932	5024	တ
691058	N/A	8730	7

Representative # analyses

(CO not included here; will consider FIO, DAO, SAND)

MDO Problem Synthesis / Implementation

Problem:



Successful MDO-NLP usually in academic environments (simulation codes open to modification) or via ad hoc approaches

- Realistic MDO
- Heroic software integration for MDA
- MDA = (usually) fixed-point iteration; too rigid

OPTIMIZER

- May leave no resources for computing optimization derivatives or experimenting with
- Difficult to get MDA-based objectives and constraints automatically

(fixed-point procedure)

- To reformulate the problem, need to "unscramble" codes
- :: One-of-a-kind, monolithic implementations

sensitivities

MDA

Want flexible and/or hybrid re-formulations

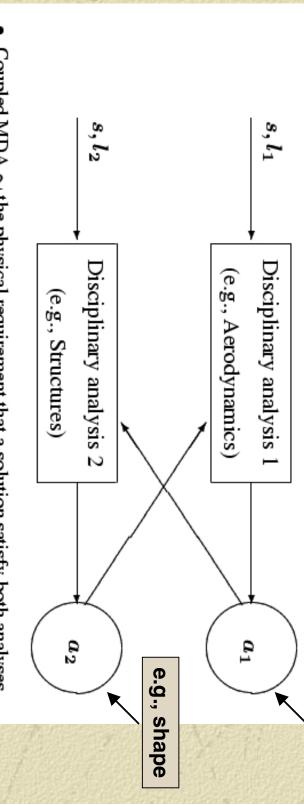
Algorithmic perspective

- * Formulation vs. algorithm
- Start with the abilities of available algorithms; devise formulations amenable to algorithms
- May not satisfy all organizational needs
- Develop reconfigurable approach to synthesis
- All MDO formulations are related and share the same basic computational components
- Appropriate implementation enables re-use of components in a straightforward way
- Tools for formulation analysis and matching computational frameworks with algorithms can be included in future

Origins of reconfigurability

- The capacity for reconfigurability stems from the relationship among formulations
- Two-discipline model problem:

e.g., loads



- Coupled MDA \sim the physical requirement that a solution satisfy both analyses
- Given $x=(s,l_1,l_2)$, we have

$$u_1 = A_1(s, l_1, a_2)$$

$$= A_2(s, l_2, a_1)$$

 a_2

Origins of reconfigurability: SAND

Write MDA as
$$a_1 = A_1(s, l_1, t_2)$$

$$a_2 = A_2(s, l_2, t_1)$$

$$t_1 = a_1$$

$$t_2 = a_2$$

Start with Simultaneous Analysis and Design (SAND) formulation:

(AKA All-at-Once, SAD, etc.)

minimize
$$f(s,t_1,t_2)$$
 minimize $f(s,t_1,t_2)$ subject to $c_1(s,l_1,a_1) \geq 0$ disciplinary constraints $a_1 = A_1(s,l_1,a_2) \geq 0$ analysis constraints $a_2 = A_2(s,l_2,a_2) \geq 0$ consistency constraints $a_1 = a_1$ $a_2 = a_2$

Origins of reconfigurability, cont.

* All other formulations may be viewed as derived of constraints or solving optimization problems optimization problem via closing a particular set from the SAND formulation by eliminating a particular set of independent variables from the

Origins of reconfigurability: DAO

Distributed Analysis Optimization

(AKA Individual Discipline Feasible, In-Between, etc.)

A DAO formulation is

$$\begin{array}{ll} \underset{s,l_1,l_2,t_1,t_2}{\text{minimize}} & f(s,t_1,t_2) \\ & \text{subject to} & c_1(s,l_1,t_1) \geq 0 \\ & c_2(s,l_2,t_2) \geq 0 \end{array} \} \\ \text{disciplinary constraints} \\ \text{consistency constraints} \left\{ \begin{array}{ll} t_1 = a_1(s,l_1,t_2) \\ t_2 = a_2(s,l_2,t_1), \end{array} \right.$$

the disciplinary analysis constraints where the disciplinary responses $a_1(s,l_1,t_2)$ and $a_2(s,l_2,t_1)$ are found by closing

$$a_1 = A_1(s, l_1, t_2)$$

 $a_2 = A_2(s, l_2, t_1).$

Origins of reconfigurability: FIO

Fully Integrated Optimization (straightforward approach)

The corresponding FIO formulation is

minimize
$$f(s, t_1(s, l_1, l_2), t_2(s, l_1, l_2))$$

 s, l_1, l_2

subject to
$$c_1(s, l_1, t_1(s, l_1, l_2)) \ge 0$$

$$c_2(s, l_2, t_2(s, l_1, l_2)) \ge 0$$

where we compute $t_1(s, l_1, l_2)$ and $t_2(s, l_1, l_2)$ by solving the MDA

$$a_1 = A_1(s, l_1, t_2)$$

$$i_2 = A_2(s, l_2, t_1)$$

$$a_2 = a_2$$

Origins of reconfigurability, cont.

- Other formulations further eliminate local optimization subproblems design variables by solving disciplinary
- Need more work to derive reconfigurable relations
- Computational components remain unchanged
- * Standard results on reduced derivatives will tell us that the sensitivities in DAO and FIO are related to those in SAND via variable reduction
- * Therefore, computational components of one of another formulation can be reconfigured to yield those

Reduced derivatives

5

$$\Phi(x) = \phi(x, v(x)).$$

Given x, v(x) is computed from

$$S(x,v(x))=0.$$

Let W be the *injection operator* (W^T is the reduction operator):

$$W=W(x,v)=\left(\begin{array}{c} I\\ -S_v^{-1}(x,v)S_x(x,v) \end{array}\right).$$

Define λ by

$$\lambda = \lambda(x, v) = -\left(S_v(x, v)\right)^{-T} \nabla_v \phi(x, v)$$

and the Lagrangian $L(x,v;\lambda)$ by

$$L(x, v; \lambda) = \phi(x, v) + \lambda^T S(x, v).$$

Reduced derivatives

The derivatives of ϕ and Φ are related as follows:

$$\nabla_x \Phi(x) = W^T(x, v(x)) \nabla_{(x,v)} \phi(x, v(x)).$$

Reduced gradient

$$\nabla_{xx}^{2} \Phi(x) = W^{T} \left(\nabla_{(x,v)}^{2} \phi + \nabla_{(x,v)}^{2} S \cdot \lambda \right) W,$$

where

Reduced Hessian of the Lagrangian

$$W = W(x, v(x))$$

$$\nabla^2_{(x,v)}\phi = \nabla^2_{(x,v)}\phi(x, v(x))$$

$$\nabla^2_{(x,v)}S \cdot \lambda = \nabla^2_{(x,v)}S(x, v(x)) \cdot \lambda(x, v(x))$$

$$= \sum_{i=1}^n \lambda_i \nabla^2_{(x,v)}S_i.$$

Barrier-SQP approach to SAND

class of algorithms: barrier-SQP methods Now illustrate reconfigurability in the context of a specific

Let

$$F_{ ext{SAND}}(s,l_1,l_2,t_1,t_2) = f(s,t_1,t_2) - \mu \left[\sum_i \ln c_1^i(s,l_1,t_1) + \sum_j \ln c_2^j(s,l_2,t_2) \right]$$

Barrier-SQP solves a sequence of subproblems of the form:

minimize
$$s,l_1,l_2,t_1,t_2,a_1,a_2$$
 $a_1 = A_1(s,l_1,t_2)$ subject to $a_1 = A_1(s,l_1,t_2)$ $a_2 = A_2(s,l_2,t_1)$ $t_1 = a_1$

Barrier-SQP approach to DAO

Let

$$F_{\text{DMO}}(s,l_1,l_2,t_1,t_2) = f(s,t_1,t_2) - \mu \left[\sum_i \ln c_1^i(s,l_1,t_1) + \sum_j \ln c_2^j(s,l_2,t_2) \right]$$

Barrier subproblem for DAO is

$$egin{array}{ll} & ext{minimize} & F_{ ext{DAO}}(s,l_1,l_2,t_1,t_2) \ & ext{subject to} & t_1 = a_1(s,l_1,t_2) \ & t_2 = a_2(s,l_2,t_1), \end{array}$$

disciplinary analyses: where the disciplinary responses $a_1(s,l_1,t_2)$ and $a_2(s,l_2,t_1)$ are computed via the $A_1(s,l_1,t_2)$

$$a_1 = A_1(s, l_1, l_2)$$

 $a_2 = A_2(s, l_2, t_1).$

Relationship among SAND, DAO, FIO Sensitivities

Then setting an appropriate (x,v) for each formulation, we have

$$abla_{(s,l_1,l_2,t_1,t_2)}F_{ exttt{DAO}} = W_{ exttt{DAO}}^T
abla_{(s,l_1,l_2,t_1,t_2,a_1,a_2)}F_{ exttt{SAND}}$$

and

$$abla_{(s,l_1,l_2,t_1,t_2)}^2 F_{ exttt{DAO}} = W_{ exttt{DAO}}^T
abla_{(s,l_1,l_2,t_1,t_2,a_1,a_2)}^2 F_{ exttt{SAND}} W_{ exttt{DAO}}.$$

subproblems for SAND and FIO: A similar relationship exists between the sensitivities for solving the barrier-SQP

$$abla_{(s,l_1,l_2)}F_{ ext{FIO}} = W_{ ext{FIO}}^T
abla_{(s,l_1,l_2,t_1,t_2,a_1,a_2)}F_{ ext{SAND}}$$

and

$$abla_{(s,l_1,l_2)}^2 F_{ ext{FIO}} = W_{ ext{FIO}}^T
abla_{(s,l_1,l_2,t_1,t_2,a_1,a_2)}^2 F_{ ext{SAND}} W_{ ext{FIO}},$$

where the expressions for the reduction operators $W^T_{ ext{\tiny FIO}}$ and $W^T_{ ext{\tiny DAO}}$ are given in the paper.

Solving barrier-SQP subproblem

Solving barrier subproblem is an iterative process, in which we approximately solve

minimize

$$rac{1}{2}p^THp+g^Tp$$

subject to
$$\nabla S^T p + S = 0$$

 $oldsymbol{H}$ - approximation to the Hessian of the Lagrangian

 $oldsymbol{g}$ - is the gradient of the Lagrangian

 $oldsymbol{p}$ - step in the iterative process

Reduced-basis approach to barrier-SQP subproblem

- For a specific choice of algorithm for solving the formulations about the relationship among the computational barrier-SQP subproblem, can say even more elements needed to solve the three
- The relationship among the sensitivities means algorithm for SAND so that with a single that it is possible to implement an optimization modification we obtain an algorithm for DAO or

Reduced-basis barrier-SQP for SAND

Algorithm 1: Reduced-basis algorithm for SAND

Initialization: Choose an initial (x_c, v_c) .

Until convergence, do {

- l. Compute the multiplier $\lambda_{SAND} = -S_v^{-1} \nabla_v F_{\text{SAND}}$.
- Test for convergence.
- 3. Construct a local model of L about (x_c, v_c) .
- 4. Take a step p^{LF} to improve linear feasibility:

$$p^{LF} = lpha \left(egin{array}{c} 0 \ -S_v^{-1}S \end{array}
ight).$$

5. Subject to the improved linear feasibility, improve optimality:

minimize
$$\frac{1}{2}q^TW^THWq + (g + Hp_{LF})^TW^Tq$$
 subject to $\parallel p_{LF} + Wq \parallel \leq r$.

6. Set
$$p = (p_x, p_v) = p_{LF} + Wq$$
.

7. Evaluate
$$(x_+, v_+) = (x_c, v_c) + (p_x, p_v)$$
 and update $(x_c, v_c), r$.

Reduced-basis SQP for FIO and DAO

Algorithm 2: Reduced-basis algorithm for SAND + analysis = FIO

```
Analysis: Solve S_{\text{FIO}}(x_c, v_c(x_c)) = 0 for v_c(x_c).
                                                                          Initialization: Choose an initial x_c.
```

Until convergence, do {

1–6. These steps remain unchanged.

7. Analysis: Solve
$$S_{\text{FIO}}(x_+,v_+)=0$$
 for $v_+(x_+)$; evaluate (x_+,v_+) .

This step remains unchanged.

Initialization: Choose an initial (x_c, v_c) .

Algorithm 3: Reduced-basis algorithm for SAND + analysis = DAO

Analysis: Solve $S_{\text{DAO}}(x_c, v_c(x_c)) = 0$ for $v_c(x_c)$.

Until convergence, do {

1–6. These steps remain unchanged.

Analysis: Solve $S_{\text{DAO}}(x_+, v_+) = 0$ for $v_+(x_+)$; evaluate (x_+, v_+) .

This step remains unchanged.

Other algorithms

- Outlined reconfigurable scheme should work for other methods that handle inequalities via a penalty function (e.g., augmented Lagrangian)
- * Active set methods are likely to take more work

Concluding remarks

- MDO problem formulation directly affects the tractability of the problem
- * There are many formulations with a spectrum of benefits
- Regardless of the formulation or even the problem synthesis and easy reconfiguration paradigm, there is a clear need for flexible
- Basic computational components combined form a promising approach with transformations within specific algorithms
- Plan: develop tools for analysis of problems in terms of formulation and algorithm matching

